Issue 1/2022 | 白藜芦醇:一种具有多种健康益处的重要治疗药物 2022-01-17

药理学期刊Drug Research新年第一期现已上线。为您推荐本期两篇精选论文,欢迎免费阅读。


Issue 01 · Volume 72 · January 2022

Original Article

6-Amino-3-Methyl-4-(2-nitrophenyl)-1,4-Dihydropyrano[2,3-c]Pyrazole-5-Carbonitrile Shows Antihypertensive and Vasorelaxant Action via Calcium Channel Blockade

Estrada-Soto S et al.


Several 4H-pyran derivatives were designed and synthesized previously as vasorelaxant agents for potential antihypertensive drugs. In this context, the objective of the present investigation was to determine the functional mechanism of vasorelaxant action of 6-amino-3-methyl-4-(2-nitrophenyl)-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile (1) and its in vivo antihypertensive effect. Thus, compound 1 showed significant vasorelaxant action on isolated aorta rat rings pre-contracted with serotonin or noradrenaline, and the effect was not endothelium-dependent. Compound 1 induced a significant relaxant effect when aortic rings were contracted with KCl (80 mM), indicating that the main mechanism of action is related to L-type calcium channel blockade. Last was corroborated since compound 1 induced a significant concentration-dependent lowering of contraction provoked by cumulative CaCl2 adding. Moreover, compound 1 was capable to block the contraction induced by FPL 64176, a specific L-type calcium channel agonist, in a concentration-dependent manner. On the other hand, docking studies revealed that compound 1 interacts on two possible sites of the L-type calcium channel and it had better affinity energy (−7.80+/−0.00 kcal/mol on the best poses) than nifedipine (−6.86+/−0.14 kcal/mol). Finally, compound 1 (50 mg/kg) showed significant antihypertensive activity, lowering the systolic and diastolic blood pressure on spontaneously hypertensive rats (SHR) without modifying heart rate.


Resveratrol: A Vital Therapeutic Agent with Multiple Health Benefits

Kaur A et al.


Resveratrol (RSV), the most effective stilbene phytoalexin synthesized naturally or induced in plants as part of their defense mechanism, is a key component of natural phenolic compounds and is being considered as a treatment option for a variety of diseases. RSV was discovered in the skin of red grapes, mulberries, peanuts, pines, and Polygonum cuspidatum weed root extracts. It was first extracted from white hellebore (Veratrum grandiflorum O. Loes) roots in 1940, then from Polygonum cuspidatum roots in 1963. However, RSV’s use as a drug is limited due to its initial conformational strength and poor stability. The research focused on a set of RSV biological activity data. RSV has been the subject of growing concern, despite its wide range of biological and therapeutic applications. According to the literature, RSV has antioxidant, anti-cancer, cardioprotective, neuroprotective, anti-inflammatory, anti-microbial, immunomodulatory, and radioprotective properties. The current analysis summarized biological applications of RSV, their mechanisms of action, and recent scientific development in the area of their delivery. It is possible to infer that RSV has many effects on infected cells' cellular functions.