A Concise and Efficient Approach to 2,6-Disubstituted 4-Fluoropyrimidines from α -CF₃ Aryl Ketones

Fangran Liu^{a,b} Xiaofei Zhang^b Qun Qian^{*a} Chunhao Yang^{*b}

^a Department of Chemistry, Shanghai University, 99 Shang Da Road, Shanghai 200444, P. R. of China giangun@shu.edu.cn

^b State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, P. R. of China chyang@simm.ac.cn

Received: 30.08.2019 Accepted after revision: 21.10.2019 Published online: 06.11.2019 DOI: 10.1055/s-0039-1690248; Art ID: ss-2019-t0493-op

Abstract Herein, a concise and efficient protocol to synthesize a series of 2,6-disubstituted 4-fluoropyrimidines as universal and useful building blocks in medicinal chemistry is reported. From readily accessible α -CF₃ aryl ketones and different amidine hydrochlorides, this method provides a very practical approach to this kind of compounds under mild conditions with good to excellent yields.

Key words fluoropyrimidine, α -CF₃ aryl ketone, metal-free, mild conditions

Fluorinated compounds have been widely applied in the fields of material science, medicinal chemistry, and agrochemicals.¹ For drug molecular design, pyrimidine is a distinctive scaffold² with important bioactivities as antibacterial,³ anticancer,⁴ and antiviral agents.⁵ Given the special properties of the fluorine atom, the introduction of fluorine into the pyrimidine moiety might significantly enhance its lipophilicity, binding selectivity, and metabolic stability.⁶ Fluorinated pyrimidine derivative flucytosine (Figure 1; **A**) was first synthesized in 1957. It was a breakthrough for drug research in systemic mycoses therapy.⁷ With further study of fluoropyrimidines, these compounds have been broadly applied in marketed drugs and agrochemicals such as voriconazole⁸ (**B**), abemaciclib⁹ (**C**), fostamatinib¹⁰ (**D**), florasulam¹¹ (**E**), and fluoxastrobin¹² (**F**).

Furthermore, fluorine atoms were found to be highly reactive when attached to the 4- or 6-positions of pyrimidines, and they could be easily substituted by nucleophilic reagents. Thus, 4-fluoropyrimidines were also very useful building blocks for the construction of complex compounds. For instance, azidopyrimidines could be obtained by treating 4-fluoropyrimidines with sodium azide¹³ (Figure 2, a). Meanwhile, 4-fluoropyrimidines reacted with Grignard reagents to afford alkylated pyrimidines¹⁴ (Figure 2, b), and if reacted with amines, aminopyrimidines¹⁵ would be obtained (Figure 2, c). Additionally, pyrimidone could be constructed by nucleophilic substitution from 4fluoropyrimidine followed by oxidation processes¹⁶ (Figure 2, d), and diaryl compounds could also be obtained via a nucleophilic substitution reaction¹⁷ (Figure 2, e). The substitution

^{© 2020.} Thieme. All rights reserved. *Synthesis* **2020**, *52*, 273–280 Georg Thieme Verlag KG, Rüdigerstraße 14, 70469 Stuttgart, Germany

Syn<mark>thesis</mark>

F. Liu et al.

reaction of 4-fluoropyrimidine with β -dicarbonyl compounds could produce optically active spiro-pyrrolidone compounds¹⁸ (Figure 2, f). For more interesting examples, by treating 4-fluoropyrimidine-5-carbonyl chloride with potassium 3-methoxy-3-oxopropanoate followed by condensation with dimethylamino ethyl acrylate and nucleophilic cyclization, heterocyclic-fused quinolones could be synthesized.¹⁹ In addition, macrocyclic compounds with a pyrimidine scaffold could be synthesized by S_NAr reaction on 4,6-dihalopyrimidine.²⁰

Figure 2 Examples of the use of 4-fluoropyrimidines for the construction of complex compounds

However, there were only a few synthetic routes available to prepare 4-fluoropyrimidines. The general approach to 4-fluoropyrimidines was nucleophilic substitution of other halogen atoms with fluorine reagents.²¹ In 1985, Inouye first reported a one-pot synthesis of CF₃, OCF₃, and F substituted pyrimidines by using complex perfluorinated compounds with amidine hydrochlorides, but the substrate scope of the reaction was very narrow.²² In 2014, Sedenkova and co-workers developed a two-step method to synthesize 4-fluoropyrimidines from *gem*-bromofluorocyclopropanes, but the total yields of the target compounds were relatively low.²³ Furthermore, a few examples have been reported in recent years on the synthesis of 4-fluoropyrimidines catalyzed by expensive metal catalysts such as Ag²⁴ or Pd²⁵ salts.

 α -CF₃ aryl ketones are very important and useful building blocks for synthesizing fluorinated compounds. As a continuation of our work,²⁶ in this article, we proposed a convenient and efficient approach to synthesize 2,6-disubstituted 4-fluoropyrimidines from α -CF₃ aryl ketones and amidine hydrochlorides, with the target compounds being prepared with good to excellent yields.

Initially, we attempted the synthesis of 2,6-disubstituted 4-fluoropyrimidine by employing 1-(4-benzyloxy)-3,3,3-trifluoropropan-1-one (**1a**), acetamidine hydrochloride (**2a**), and K_2CO_3 in methanol, under reflux conditions. However, none of the target compound was detected (Table 1, entry 1). By changing the solvent to aprotic DMF, we were delighted to obtain the desired product in 36% yield (entry 2). Based on this result, different bases were examined; the results showed that $KHCO_3$ (47% yield) was superior to other bases including K_2CO_3 , Na_2CO_3 , Cs_2CO_3 , DBU, DIPEA, TEA and KOAc (entries 2–9). Different aprotic solvents such as DMA, DMSO, MeCN, NMP, THF, and 1,4-dioxane was used as solvent, the yield increased to 55%. The yield improved further upon increasing the reaction temperature, but it decreased when the temperature exceeded 60 °C (entries 15–17). Finally, the use of KHCO₃ and 1,4-dioxane at 60 °C were established as the optimized reaction conditions for this protocol.

Table 1 Optimization of the Reaction Conditions^a

Ia 2a BnO 3a Entry Base Solvent T (°C) Yield (%) ^b 1 K ₂ CO ₃ CH ₃ OH reflux 0 2 K ₂ CO ₃ DMF 40 36 3 Na ₂ CO ₃ DMF 40 45 4 Cs ₂ CO ₃ DMF 40 28 5 DBU DMF 40 NR 6 DIPEA DMF 40 15 7 TEA DMF 40 NR 9 KHCO ₃ DMF 40 18 8 KOAc DMF 40 42 10 KHCO ₃ DMA 40 42 11 KHCO ₃ DMSO 40 23 12 KHCO ₃ MeCN 40 51 13 KHCO ₃ THF 40 46 15 KHCO ₃ 1,4-dioxane 40 55 16 KH	BnQ	CF3 +		ase, T °C solvent	N N F
Entry Base Solvent T (°C) Yield (%) ^b 1 K ₂ CO ₃ CH ₃ OH reflux 0 2 K ₂ CO ₃ DMF 40 36 3 Na ₂ CO ₃ DMF 40 45 4 Cs ₂ CO ₃ DMF 40 28 5 DBU DMF 40 NR 6 DIPEA DMF 40 15 7 TEA DMF 40 NR 9 KHCO ₃ DMF 40 23 10 KHCO ₃ DMF 40 42 11 KHCO ₃ DMSO 40 23 12 KHCO ₃ DMSO 40 40 13 KHCO ₃ THF 40 46 15 KHCO ₃ 1,4-dioxane 40 55 16 KHCO ₃ 1,4-dioxane 70 65		1a	2a	BnO	3a
1 K_2CO_3 CH_3OH reflux 0 2 K_2CO_3 DMF 40 36 3 Na_2CO_3 DMF 40 45 4 Cs_2CO_3 DMF 40 28 5 DBU DMF 40 NR 6 DIPEA DMF 40 15 7 TEA DMF 40 18 8 KOAc DMF 40 42 10 KHCO_3 DMF 40 42 11 KHCO_3 DMF 40 42 11 KHCO_3 DMSO 40 23 12 KHCO_3 MMP 40 40 13 KHCO_3 THF 40 46 15 KHCO_3 1,4-dioxane 40 55 16 KHCO_3 1,4-dioxane 70 55	Entry	Base	Solvent	Т (°С)	Yield (%) ^b
2 K_2CO_3 DMF40363 Na_2CO_3 DMF40454 Cs_2CO_3 DMF40285DBUDMF40NR6DIPEADMF40157TEADMF40NR9KHCO_3DMF404710KHCO_3DMA404211KHCO_3DMSO402312KHCO_3MECN405113KHCO_3THF404615KHCO_31,4-dioxane405516KHCO_31,4-dioxane7065	1	K ₂ CO ₃	CH ₃ OH	reflux	0
3 Na ₂ CO ₃ DMF 40 45 4 Cs ₂ CO ₃ DMF 40 28 5 DBU DMF 40 NR 6 DIPEA DMF 40 15 7 TEA DMF 40 NR 8 KOAc DMF 40 NR 9 KHCO ₃ DMF 40 47 10 KHCO ₃ DMA 40 42 11 KHCO ₃ DMSO 40 23 12 KHCO ₃ MeCN 40 40 13 KHCO ₃ MP 40 40 14 KHCO ₃ THF 40 46 15 KHCO ₃ 1,4-dioxane 40 55 16 KHCO ₃ 1,4-dioxane 60 78 17 KHCO ₃ 1,4-dioxane 70 65	2	K ₂ CO ₃	DMF	40	36
4 Cs2CO3 DMF 40 28 5 DBU DMF 40 NR 6 DIPEA DMF 40 15 7 TEA DMF 40 18 8 KOAc DMF 40 NR 9 KHCO3 DMF 40 47 10 KHCO3 DMA 40 42 11 KHCO3 DMSO 40 23 12 KHCO3 MeCN 40 40 13 KHCO3 THF 40 46 15 KHCO3 1,4-dioxane 40 55 16 KHCO3 1,4-dioxane 60 78 17 KHCO3 1,4-dioxane 70 65	3	Na ₂ CO ₃	DMF	40	45
5 DBU DMF 40 NR 6 DIPEA DMF 40 15 7 TEA DMF 40 18 8 KOAc DMF 40 NR 9 KHCO3 DMF 40 47 10 KHCO3 DMA 40 42 11 KHCO3 DMSO 40 23 12 KHCO3 MeCN 40 40 13 KHCO3 THF 40 46 15 KHCO3 1,4-dioxane 40 55 16 KHCO3 1,4-dioxane 60 78 17 KHCO3 1,4-dioxane 70 65	4	Cs ₂ CO ₃	DMF	40	28
6 DIPEA DMF 40 15 7 TEA DMF 40 18 8 KOAc DMF 40 NR 9 KHCO3 DMF 40 47 10 KHCO3 DMA 40 42 11 KHCO3 DMSO 40 23 12 KHCO3 MeCN 40 51 13 KHCO3 NMP 40 46 15 KHCO3 THF 40 45 15 KHCO3 1,4-dioxane 40 55 16 KHCO3 1,4-dioxane 60 78 17 KHCO3 1,4-dioxane 70 65	5	DBU	DMF	40	NR
7 TEA DMF 40 18 8 KOAc DMF 40 NR 9 KHCO3 DMF 40 47 10 KHCO3 DMA 40 42 11 KHCO3 DMSO 40 23 12 KHCO3 MeCN 40 51 13 KHCO3 NMP 40 46 14 KHCO3 THF 40 45 15 KHCO3 1,4-dioxane 40 55 16 KHCO3 1,4-dioxane 60 78 17 KHCO3 1,4-dioxane 70 65	6	DIPEA	DMF	40	15
8 KOAc DMF 40 NR 9 KHCO3 DMF 40 47 10 KHCO3 DMA 40 42 11 KHCO3 DMSO 40 23 12 KHCO3 MeCN 40 51 13 KHCO3 NMP 40 40 14 KHCO3 THF 40 46 15 KHCO3 1,4-dioxane 60 78 17 KHCO3 1,4-dioxane 70 65	7	TEA	DMF	40	18
9 KHCO3 DMF 40 47 10 KHCO3 DMA 40 42 11 KHCO3 DMSO 40 23 12 KHCO3 MeCN 40 51 13 KHCO3 NMP 40 40 14 KHCO3 THF 40 46 15 KHCO3 1,4-dioxane 40 55 16 KHCO3 1,4-dioxane 60 78 17 KHCO3 1,4-dioxane 70 65	8	KOAc	DMF	40	NR
10 KHCO3 DMA 40 42 11 KHCO3 DMSO 40 23 12 KHCO3 MeCN 40 51 13 KHCO3 NMP 40 40 14 KHCO3 THF 40 46 15 KHCO3 1,4-dioxane 40 55 16 KHCO3 1,4-dioxane 60 78 17 KHCO3 1,4-dioxane 70 65	9	KHCO ₃	DMF	40	47
11 KHCO3 DMSO 40 23 12 KHCO3 MeCN 40 51 13 KHCO3 NMP 40 40 14 KHCO3 THF 40 46 15 KHCO3 1,4-dioxane 40 55 16 KHCO3 1,4-dioxane 60 78 17 KHCO3 1,4-dioxane 70 65	10	KHCO ₃	DMA	40	42
12 KHCO3 MeCN 40 51 13 KHCO3 NMP 40 40 14 KHCO3 THF 40 46 15 KHCO3 1,4-dioxane 40 55 16 KHCO3 1,4-dioxane 60 78 17 KHCO3 1,4-dioxane 70 65	11	KHCO ₃	DMSO	40	23
13 KHCO3 NMP 40 40 14 KHCO3 THF 40 46 15 KHCO3 1,4-dioxane 40 55 16 KHCO3 1,4-dioxane 60 78 17 KHCO3 1,4-dioxane 70 65	12	KHCO ₃	MeCN	40	51
14 KHCO3 THF 40 46 15 KHCO3 1,4-dioxane 40 55 16 KHCO3 1,4-dioxane 60 78 17 KHCO3 1,4-dioxane 70 65	13	KHCO ₃	NMP	40	40
15 KHCO3 1,4-dioxane 40 55 16 KHCO3 1,4-dioxane 60 78 17 KHCO3 1,4-dioxane 70 65	14	KHCO ₃	THF	40	46
16 KHCO ₃ 1,4-dioxane 60 78 17 KHCO ₃ 1,4-dioxane 70 65	15	KHCO ₃	1,4-dioxane	40	55
17 KHCO ₃ 1,4-dioxane 70 65	16	KHCO ₃	1,4-dioxane	60	78
	17	KHCO ₃	1,4-dioxane	70	65

^a Reaction conditions: **1a** (0.30 mmol, 88 mg), **2a** (0.33 mmol, 31 mg), base (0.90 mmol), solvent (3.0 mL) for 12 h.

^b Isolated yield.

Under the optimized conditions, the substrate scope was explored. Different α -CF₃ aryl ketones reacted with acetamidine hydrochloride to afford the products with moderate to excellent yields (50–93%; Scheme 1). The results showed that both *para*-substituted electron-donating and electron-withdrawing groups on the benzene ring of α -CF₃ phenyl ketones were well tolerated in these reactions, except for -OCH₃ (**3b**). Use of the *ortho*-substituted-CH₃ ketone (**3d**) decreased the yield, probably because of the steric effect. To our delight, 3,3,3-trifluoro-1-(thiophen-2yl)propan-1-one also reacted with **2** with an acceptable yield of 43% (**3m**). Downloaded by: Kevin Chang. Copyrighted material

F. Liu et al.

275

The reactions of various amidine hydrochlorides and 1-(4-methylphenyl)-3,3,3-trifluoropropan-1-one (**1f**) were also investigated (Scheme 2), and the products were also obtained with good to excellent yields of 73–98%.

Interestingly, the N-heterocyclic amidine hydrochlorides gave the desired compounds with excellent yields (Scheme 2; **4n**, **4o**). Finally, to demonstrate the practical utility of this method, we employed 4-(3-chlorophenyl)-2ethyl-6-fluoropyrimidine (**5**) as the substrate to synthesize a reported potent PED4 inhibitor 2-(4-((6-(3-chlorophenyl)-2-ethylpyrimidin-4-yl)amino)phenyl) acetamide (**7**)²⁷ in a one-pot, two-step way with a combined yield of 18%.

Based on these results, we proposed a possible mechanism for this method below (Scheme 4). In the presence of KHCO₃, amidine hydrochloride first forms a free-base amidine, which undergoes a condensation reaction with the α -CF₃ aryl ketone to give intermediate [**A**]. The imine subsequently engages in nucleophilic substitution, leading to heterocyclic compound [**B**]. Hydrogen fluoride is then easily eliminated under KHCO₃ to give more stable aromatic compound as the target product [**C**].

In conclusion, it has been shown that synthesizing 2,6disubstituted 4-fluoropyrimidines from α -CF₃ aryl ketones is a very convenient and efficient approach. This method tolerates a wide range of substrates, from different α -CF₃ aryl ketones to various amidine salts. The reaction

Syn thesis

F. Liu et al.

conditions are mild and the protocol can be expanded to a diverse range of heterocyclic compounds that offer potential bioactive agents in medicinal chemistry.

All reagents were purchased from commercial suppliers and used without further purification. The progress of all of the reactions was monitored by thin layer chromatography with standard TLC silica gel plates, and the developed plates were visualized under UV light. All of the compounds were purified by column chromatography. Chromatography was performed on silica gel (200-300 mesh). Nuclear magnetic resonance spectra were recorded on Brucker Avance III 400/500/600 NMR spectrometer. Chemical shifts were reported in parts per million (ppm, δ). Proton coupling patterns are described as singlet (s), doublet (d), triplet (t), quartet (q) and multipet (m). Tetramethylsilane (TMS) was used as internal standard (1H NMR: TMS at 0.00 ppm; CHCl₃ at 7.26 ppm, DMSO at 2.50 ppm; 13C NMR: CDCl₃ at 77.16 ppm). High-resolution mass spectra (HRMS) were recorded on a Finnigan/MAT-95 (EI), Finnigan LCO/DECA or Micromass Ultra O-TOF (ESI) spectrometer. Melting points were measured by Büchi 510 melting point apparatus without further correction.

The α -CF₃-aryl ketones **1** are known compounds and were prepared according to reported procedures (for details see the Supporting Information).^{26,28}

Synthesis of 2,6-Disubstituted 4-Fluoropyrimidines 3a–m and 4a–o; General Procedure

To a round-bottom flask (10 mL) with a magnetic stirrer bar, 1,4-dioxane (3.0 mL), α -CF₃-aryl ketone (0.30 mmol, 1.0 equiv), amidine hydrochloride (0.33 mmol, 1.1 equiv) and KHCO₃ (0.9 mmol, 3.0 equiv) were added. The resulting mixture was stirred at 60 °C for 12–48 h and the progress of the reaction was monitored by TLC. After the consumption of α -CF₃-aryl ketone, the reaction was quenched with H₂O (10 mL), and the mixture was extracted with EtOAc (3 × 10 mL). The organic layer was then dried over anhydrous Na₂SO₄ and concentrated under vacuum by rotary evaporation. The residue was purified by chromatography on silica gel (PE/EtOAc) to afford the desired compound.

4-(4-(Benzyloxy)phenyl)-6-fluoro-2-methylpyrimidine (3a)

Yield: 0.069 g (0.23 mmol, 78%); white solid; mp 125–126 °C; $R_f = 0.30$ (PE/EtOAc, 60:1).

¹H NMR (400 MHz, CDCl₃): δ = 8.07–8.01 (m, 2 H, Ph), 7.48–7.31 (m, 5 H, OBn), 7.11–7.06 (m, 2 H, Ph), 7.04 (s, 1 H, CH, Pyr), 5.14 (s, 2 H, CH₂), 2.73 (s, 3 H, CH₃).

¹³C NMR (126 MHz, CDCl₃): δ = 170.8 (d, ${}^{1}J_{C-F}$ = 249.5 Hz, CF, Pyr), 169.3 (d, ${}^{3}J_{C-F}$ = 13.8 Hz, C, Pyr), 168.3 (d, ${}^{3}J_{C-F}$ = 7.2 Hz, C, Pyr), 161.6 (OC), 136.4 (C), 129.0 (2CH), 128.7 (2CH), 128.3 (C), 127.5 (2CH), 115.3 (2CH), 97.9 (d, ${}^{2}J_{C-F}$ = 30.9 Hz, CH, Pyr), 70.2 (OCH₂), 26.0 (CH₃). ¹⁹F NMR (471 MHz, CDCl₃): δ = -62.03.

HRMS (ESI): m/z [M + H]⁺ calcd for C₁₈H₁₆FN₂O: 295.1241; found: 295.1243.

4-Fluoro-6-(4-methoxyphenyl)-2-methylpyrimidine (3b)

Yield: 0.033 g (0.15 mmol, 50%); white solid; mp 79–80 °C; R_{f} = 0.20 (PE/EtOAc, 60:1).

¹H NMR (600 MHz, CDCl₃): δ = 8.07–8.03 (m, 2 H), 7.05 (s, 1 H), 7.01 (d, *J* = 8.9 Hz, 2 H), 3.89 (s, 3 H), 2.73 (s, 3 H).

¹³C NMR (126 MHz, CDCl₃): δ = 170.7 (d, *J* = 249.5 Hz), 169.2 (d, *J* = 14.2 Hz), 168.2 (d, *J* = 7.5 Hz), 162.3, 128.9, 128.5 (d, *J* = 5.1 Hz), 114.3, 97.8 (d, *J* = 30.9 Hz), 55.4, 25.9.

¹⁹F NMR (471 MHz, CDCl₃): δ = -62.10.

HRMS (ESI): m/z [M + H]⁺ calcd for C₁₂H₁₂FN₂O: 219.0928; found: 219.0923.

4-(4-(tert-Butyl)phenyl)-6-fluoro-2-methylpyrimidine (3c)

Reaction time: 24 h.

Yield: 0.067 g (0.27 mmol, 91%); yellow oil; $R_f = 0.20$ (PE/EtOAc, 60:1).

¹H NMR (400 MHz, CDCl₃): δ = 8.02–7.96 (m, 2 H), 7.53 (d, *J* = 8.6 Hz, 2 H), 7.10 (s, 1 H), 2.75 (s, 3 H), 1.36 (s, 9 H).

¹³C NMR (101 MHz, CDCl₃): δ = 170.8 (d, J = 250.0 Hz), 169.4 (d, J = 13.9 Hz), 168.9 (d, J = 7.3 Hz), 155.0, 133.3 (d, J = 4.8 Hz), 127.2, 126.1, 98.8 (d, J = 31.0 Hz), 35.0, 31.3, 26.0.

¹⁹F NMR (471 MHz, CDCl₃): δ = -61.73.

HRMS (ESI): m/z [M + H]⁺ calcd for C₁₅H₁₇FN₂: 245.1449; found: 245.1445.

4-Fluoro-2-methyl-6-(o-tolyl)pyrimidine (3d)

Yield: 0.036 g (0.18 mmol, 60%); colorless oil; $R_f = 0.20$ (PE/EtOAc, 60:1).

¹H NMR (500 MHz, $CDCl_3$): δ = 7.42 (dd, J = 7.8, 1.5 Hz, 1 H), 7.39–7.34 (m, 1 H), 7.33–7.28 (m, 2 H), 6.87 (d, J = 1.4 Hz, 1 H), 2.76 (s, 3 H), 2.42 (s, 3 H).

¹³C NMR (126 MHz, CDCl₃): δ = 172.0 (d, J = 7.1 Hz), 170.0 (d, J = 259.8 Hz), 169.1 (d, J = 5.6 Hz), 137.3 (d, J = 4.5 Hz), 136.1, 131.3, 129.9, 129.5, 126.3, 103.4 (d, J = 29.8 Hz), 26.0, 20.4.

¹⁹F NMR (471 MHz, CDCl₃): δ = -61.08.

HRMS (ESI): m/z [M + H]⁺ calcd for C₁₂H₁₂FN₂: 203.0979; found: 203.0984.

4-Fluoro-2-methyl-6-(m-tolyl)pyrimidine (3e)

Yield: 0.050 g (0.25 mmol, 82%); colorless oil; $R_f = 0.20$ (PE/EtOAc, 60:1).

¹H NMR (400 MHz, CDCl₃): δ = 7.89 (d, *J* = 2.2 Hz, 1 H), 7.83 (d, *J* = 7.6 Hz, 1 H), 7.40 (t, *J* = 7.6 Hz, 1 H), 7.34 (d, *J* = 7.6 Hz, 1 H), 7.12 (s, 1 H), 2.76 (s, 3 H), 2.46 (s, 3 H).

¹³C NMR (126 MHz, CDCl₃): δ = 170.8 (d, *J* = 250.2 Hz), 169.5 (d, *J* = 13.8 Hz), 169.2 (d, *J* = 7.4 Hz), 138.9, 136.1 (d, *J* = 4.9 Hz), 132.3, 129.0, 128.1, 124.6, 99.2 (d, *J* = 30.7 Hz), 26.0, 21.6.

¹⁹F NMR (376 MHz, CDCl₃): δ = -61.46.

HRMS (ESI): m/z [M + H]⁺ calcd for C₁₂H₁₂FN₂: 203.0979; found: 203.0979.

4-Fluoro-2-methyl-6-(p-tolyl)pyrimidine (3f)

Yield: 0.055 g (0.27 mmol, 90%); yellow solid; mp 35–36 °C; R_f = 0.20 (PE/EtOAc, 60:1).

¹H NMR (400 MHz, CDCl₃): δ = 7.97 (d, *J* = 8.3 Hz, 2 H), 7.31 (d, *J* = 8.0 Hz, 2 H), 7.09 (s, 1 H), 2.74 (s, 3 H), 2.43 (s, 3 H).

¹³C NMR (101 MHz, CDCl₃): δ = 170.8 (d, J = 249.9 Hz), 169.4 (d, J = 13.8 Hz), 168.8 (d, J = 7.2 Hz), 142.0, 133.3 (d, J = 4.9 Hz), 129.8, 127.3, 98.7 (d, J = 31.0 Hz), 26.0, 21.6.

¹⁹F NMR (471 MHz, CDCl₃): δ = -61.77.

277

F. Liu et al.

HRMS (EI): m/z [M + H]⁺ calcd for C₁₂H₁₁FN₂: 202.0901; found: 202.0904.

4-Fluoro-2-methyl-6-phenylpyrimidine (3g)

Yield: 0.040 g (0.21 mmol, 71%); colorless oil; R_f = 0.15 (PE/EtOAc 60:1).

 ^1H NMR (500 MHz, CDCl_3): δ = 8.08–8.02 (m, 2 H), 7.54–7.48 (m, 3 H), 7.12 (s, 1 H), 2.75 (s, 3 H).

¹³C NMR (126 MHz, CDCl₃): δ = 170.8 (d, J = 250.3 Hz), 169.5 (d, J = 13.9 Hz), 168.9 (d, J = 7.4 Hz), 136.1 (d, J = 5.0 Hz), 131.4, 129.1, 127.4, 99.2 (d, J = 30.9 Hz), 26.0.

¹⁹F NMR (471 MHz, CDCl₃): δ = -61.35.

HRMS (ESI): m/z [M + H]⁺ calcd for C₁₁H₁₀FN₂: 189.0823; found: 189.0822.

4-([1,1'-Biphenyl]-4-yl)-6-fluoro-2-methylpyrimidine (3h)

Reaction time: 24 h.

Yield: 0.055 g (0.21 mmol, 69%); white solid; mp 122–123 °C; $R_f = 0.20$ (PE/EtOAc, 60:1).

¹H NMR (400 MHz, $CDCl_3$): δ = 8.16 (d, *J* = 8.5 Hz, 2 H), 7.75 (d, *J* = 8.5 Hz, 2 H), 7.66 (d, *J* = 6.9 Hz, 2 H), 7.49 (t, *J* = 7.6 Hz, 2 H), 7.41 (d, *J* = 6.1 Hz, 1 H), 7.18 (s, 1 H), 2.78 (s, 3 H).

¹³C NMR (126 MHz, CDCl₃): δ = 170.3 (d, J = 250.0 Hz), 169.0 (d, J = 13.9 Hz), 167.9 (d, J = 7.5 Hz), 143.7, 139.5, 134.3 (d, J = 5.1 Hz), 128.4, 127.5, 127.3, 127.2, 126.7, 98.4 (d, J = 30.9 Hz), 25.5.

¹⁹F NMR (471 MHz, CDCl₃): δ = -61.36.

HRMS (ESI): m/z [M + H]⁺ calcd for C₁₇H₁₄FN₂: 265.1136; found: 265.1140.

4-Fluoro-2-methyl-6-(4-nitrophenyl)pyrimidine (3i)

Yield: 0.065 g (0.28 mmol, 93%); yellow solid; mp 174–176 °C; $R_f = 0.20$ (PE/EtOAc, 60:1).

¹H NMR (600 MHz, CDCl₃): δ = 8.37 (d, *J* = 8.8 Hz, 2 H), 8.26 (d, *J* = 8.8 Hz, 2 H), 7.22 (s, 1 H), 2.80 (s, 3 H).

¹³C NMR (126 MHz, CDCl₃): δ = 171.1 (d, J = 207.9 Hz), 170.1 (d, J = 30.1 Hz), 166.2 (d, J = 7.3 Hz), 149.7, 141.8 (d, J = 5.1 Hz), 128.5, 124.3, 100.4 (d, J = 31.6 Hz), 26.0.

¹⁹F NMR (471 MHz, CDCl₃): δ = -59.34

HRMS (EI): m/z [M + H]⁺ calcd for C₁₁H₈O₂FN₃: 233.0595; found: 233.0594.

4-(6-Fluoro-2-methylpyrimidin-4-yl)benzonitrile (3j)

Yield: 0.051 g (0.24 mmol, 80%); white solid; mp 123–124 °C; R_f = 0.20 (PE/EtOAc, 60:1).

¹H NMR (400 MHz, CDCl₃): δ = 8.21 (d, *J* = 8.0 Hz, 2 H), 7.84 (d, *J* = 8.1 Hz, 2 H), 7.20 (s, 1 H), 2.80 (s, 3 H).

¹³C NMR (101 MHz, CDCl₃): δ = 171.2 (d, *J* = 198.9 Hz), 169.8 (d, *J* = 39.1 Hz), 166.6 (d, *J* = 7.4 Hz), 140.0 (d, *J* = 4.7 Hz), 132.9, 128.0, 118.3, 114.9, 100.1 (d, *J* = 31.5 Hz), 26.0.

¹⁹F NMR (471 MHz, CDCl₃): δ = -59.57.

HRMS (ESI): m/z [M + H]⁺ calcd for C₁₂H₈FN₃: 213.0697; found: 213.0696.

4-Fluoro-6-(4-fluorophenyl)-2-methylpyrimidine (3k)

Yield: 0.055 g (0.27 mmol, 89%); white solid; mp 107–108 °C; $R_f = 0.20$ (PE/EtOAc, 60:1).

¹H NMR (400 MHz, CDCl₃): δ = 8.15–7.96 (m, 2 H), 7.19 (t, *J* = 8.7 Hz, 2 H), 7.09 (s, 1 H), 2.75 (s, 3 H).

¹³C NMR (126 MHz, CDCl₃): δ = 170.9 (d, *J* = 250.4 Hz), 169.6 (d, *J* = 14.1 Hz), 167.7 (d, *J* = 7.4 Hz), 165.0 (d, *J* = 252.4 Hz), 132.4–132.1 (m), 129.6 (d, *J* = 8.7 Hz), 116.2 (d, *J* = 21.9 Hz), 98.8 (d, *J* = 31.3 Hz), 26.0.

¹⁹F NMR (471 MHz, CDCl₃): δ = -61.09, -108.60.

HRMS (ESI): m/z [M + H]⁺ calcd for C₁₁H₉F₂N₂: 207.0728; found: 207.0726.

4-(4-Chlorophenyl)-6-fluoro-2-methylpyrimidine (31)

Yield: 0.055 g (0.25 mmol, 82%); white solid; mp 86–87 °C; R_f = 0.25 (PE/EtOAc, 60:1).

¹H NMR (400 MHz, CDCl₃): δ = 8.03 (d, *J* = 8.7 Hz, 2 H), 7.49 (d, *J* = 8.6 Hz, 2 H), 7.11 (s, 1 H), 2.76 (s, 3 H).

¹³C NMR (126 MHz, CDCl₃): δ = 170.9 (d, J = 250.8 Hz), 169.7 (d, J = 14.0 Hz), 167.6 (d, J = 7.3 Hz), 137.8, 134.5 (d, J = 5.0 Hz), 129.4, 128.7, 99.0 (d, J = 31.2 Hz), 26.0.

¹⁹F NMR (471 MHz, CDCl₃): δ = -60.82.

HRMS (ESI): m/z [M + H]⁺ calcd for C₁₁H₉ClFN₂: 223.0433; found: 223.0431.

4-Fluoro-2-methyl-6-(thiophen-2-yl)pyrimidine (3m)

Yield: 0.025 g (0.13 mmol, 43%); colorless oil; $R_f = 0.15$ (PE/EtOAc, 60:1).

¹H NMR (500 MHz, CDCl₃): δ = 7.77 (dd, *J* = 3.8, 1.1 Hz, 1 H), 7.55 (dd, *J* = 5.0, 1.1 Hz, 1 H), 7.17 (dd, *J* = 5.0, 3.8 Hz, 1 H), 6.98 (d, *J* = 1.2 Hz, 1 H), 2.70 (s, 3 H).

¹³C NMR (126 MHz, CDCl₃): δ = 170.7 (d, J = 231.4 Hz), 169.6 (d, J = 3.7 Hz), 163.3 (d, J = 7.6 Hz), 141.4 (d, J = 6.0 Hz), 130.8, 128.6, 128.1, 97.1 (d, J = 32.0 Hz), 25.8.

¹⁹F NMR (471 MHz, CDCl₃): δ = -61.65.

HRMS (ESI): m/z [M + H]⁺ calcd for C₉H₈FN₂S: 195.0387; found: 195.0384.

2-Ethyl-4-fluoro-6-(p-tolyl)pyrimidine (4a)

Reaction time: 24 h.

Yield: 0.056 g (0.26 mmol, 86%); white solid; mp 216–218 °C; $R_f = 0.25$ (PE/EtOAc, 60:1).

¹H NMR (400 MHz, CDCl₃): δ = 7.99 (d, *J* = 8.2 Hz, 2 H, Ph), 7.31 (d, *J* = 8.0 Hz, 2 H, Ph), 7.10 (s, 1 H, CH, Pyr), 3.00 (q, *J* = 7.6 Hz, 2 H, CH₂), 2.43 (s, 3 H, CH₃, Ph), 1.41 (t, *J* = 7.6 Hz, 3 H, CH₃).

¹³C NMR (101 MHz, CDCl₃): δ = 173.4 (d, ${}^{3}J_{C-F}$ = 13.3 Hz, C, Pyr), 171.0 (d, ${}^{1}J_{C-F}$ = 249.8 Hz, CF, Pyr), 168.6 (d, ${}^{3}J_{C-F}$ = 7.2 Hz, C, Pyr), 141.9 (C, Ph), 133.4 (d, ${}^{4}J_{C-F}$ = 5.3 Hz, C, Ph), 129.8 (2CH, Ph), 127.3 (2CH, Ph), 98.7 (d, ${}^{2}J_{C-F}$ = 30.9 Hz, CH, Pyr), 32.5 (CH₂), 21.6 (CH₃-Ph), 12.4 (CH₃). ¹⁹F NMR (471 MHz, CDCl₃): δ = -61.88.

HRMS (ESI): m/z [M + H]⁺ calcd for C₁₃H₁₄FN₂: 217.1136; found: 217.1136.

2-Cyclopropyl-4-fluoro-6-(p-tolyl)pyrimidine (4b)

Reaction time: 48 h.

Yield: 0.055 g (0.24 mmol, 81%); white solid; mp 78–80 °C; R_f = 0.20 (PE/EtOAc, 60:1).

F. Liu et al.

¹H NMR (400 MHz, CDCl₃): δ = 7.96 (d, *J* = 8.2 Hz, 2 H), 7.30 (d, *J* = 8.0 Hz, 2 H), 7.02 (d, *J* = 0.9 Hz, 1 H), 2.43 (s, 3 H), 2.27 (td, *J* = 8.2, 4.2 Hz, 1 H), 1.27–1.21 (m, 2 H), 1.11 (dg, *J* = 7.4, 3.8 Hz, 2 H).

¹³C NMR (126 MHz, CDCl₃): δ = 173.6 (d, J = 13.9 Hz), 171.0 (d, J = 249.3 Hz), 168.3 (d, J = 7.3 Hz), 141.8, 133.5 (d, J = 5.1 Hz), 129.7, 127.3, 98.0 (d, J = 31.7 Hz), 21.5, 18.4, 11.2.

¹⁹F NMR (471 MHz, CDCl₃): δ = -62.35.

HRMS (ESI): m/z [M + H]⁺ calcd for C₁₄H₁₄FN₂: 229.1136; found: 229.1136.

2-Cyclobutyl-4-fluoro-6-(p-tolyl)pyrimidine (4c)

Reaction time: 48 h.

Yield: 0.065 g (0.27 mmol, 90%); yellow solid; mp 50–51 °C; R_f = 0.30 (PE/EtOAc, 60:1).

¹H NMR (400 MHz, $CDCI_3$): $\delta = 8.03-7.98$ (m, 2 H), 7.32 (d, J = 8.0 Hz, 2 H), 7.08 (d, J = 0.9 Hz, 1 H), 3.87-3.77 (m, 1 H), 2.53 (pd, J = 9.2, 2.4 Hz, 2 H), 2.44 (s, 3 H), 2.49-2.34 (m, 2 H), 2.09 (dp, J = 11.0, 8.9 Hz, 1 H), 2.03-1.92 (m, 1 H).

¹³C NMR (101 MHz, CDCl₃): δ = 174.4 (d, J = 12.9 Hz), 171.1 (d, J = 249.9 Hz), 168.4 (d, J = 7.3 Hz), 141.9, 133.5 (d, J = 5.2 Hz), 129.7, 127.3, 98.5 (d, J = 31.1 Hz), 42.9, 27.6, 21.5, 18.3.

¹⁹F NMR (471 MHz, CDCl₃): δ = -61.81.

HRMS (ESI): m/z [M + H]⁺ calcd for C₁₅H₁₆FN₂: 243.1292; found: 243.1288.

2-(Diethoxymethyl)-4-fluoro-6-(p-tolyl)pyrimidine (4d)

Yield: 0.065 g (0.23 mmol, 75%); yellow solid; $R_f = 0.2$ (PE/EtOAc, 60:1).

¹H NMR (400 MHz, CDCl₃): δ = 8.02 (d, *J* = 8.1 Hz, 2 H), 7.32 (d, *J* = 8.0 Hz, 2 H), 7.24 (s, 1 H), 5.57 (s, 1 H), 3.87 (dq, *J* = 9.5, 7.0 Hz, 2 H), 3.75 (dq, *J* = 9.8, 7.1 Hz, 2 H), 2.44 (s, 3 H), 1.30 (t, *J* = 7.0 Hz, 6 H). ¹³C NMR (126 MHz, CDCl₃): δ = 171.4 (d, *J* = 253.0 Hz), 169.1 (d, *J* = 7.3 Hz), 166.9 (d, *J* = 12.4 Hz), 142.3, 132.9 (d, *J* = 4.5 Hz), 129.8, 127.5, 101.9, 101.0 (d, *J* = 30.9 Hz), 62.9, 21.6, 15.3.

¹⁹F NMR (471 MHz, CDCl₃): δ = -60.05.

HRMS (ESI): m/z [M + H]⁺ calcd for $C_{16}H_{20}FN_2O_2$: 291.1503; found: 291.1504.

4-Fluoro-2-(phenoxymethyl)-6-(p-tolyl)pyrimidine (4e)

Reaction time: 24 h.

Yield: 0.071 g (0.24 mmol, 81%); white solid; mp 55–56 °C; R_f = 0.25 (PE/EtOAc, 60:1).

¹H NMR (400 MHz, CDCl₃): δ = 7.97 (d, *J* = 8.2 Hz, 2 H), 7.35–7.25 (m, 4 H), 7.21 (s, 1 H), 7.08–7.00 (m, 2 H), 7.01–6.94 (m, 1 H), 5.31 (s, 2 H), 2.43 (s, 3 H).

¹³C NMR (126 MHz, CDCl₃): δ = 171.4 (d, J = 252.6 Hz), 169.2 (d, J = 7.6 Hz), 167.1 (d, J = 13.2 Hz), 158.5, 142.4, 132.8 (d, J = 4.9 Hz), 129.9, 129.5, 127.4, 121.3, 115.1, 100.2 (d, J = 30.6 Hz), 70.3, 21.6.

¹⁹F NMR (471 MHz, CDCl₃): δ = -60.32.

HRMS (ESI): m/z [M + H]⁺ calcd for $C_{18}H_{16}FN_2O$: 295.1241; found: 295.1247.

4-Fluoro-2,6-di-*p*-tolylpyrimidine (4f)

Reaction time: 48 h.

Yield: 0.050 g (0.18 mmol, 60%); white solid; mp 118–120 °C; $R_f = 0.20$ (PE/EtOAc, 80:1).

¹H NMR (400 MHz, CDCl₃): δ = 8.49–8.41 (m, 2 H), 8.14–8.07 (m, 2 H), 7.33 (dd, J = 12.5, 8.0 Hz, 4 H), 7.15 (d, J = 1.0 Hz, 1 H), 2.46 (s, 3 H), 2.45 (s, 3 H).

¹³C NMR (101 MHz, CDCl₃): δ = 171.3 (d, J = 248.6 Hz), 168.6 (d, J = 7.3 Hz), 165.4 (d, J = 13.6 Hz), 141.9 (d, J = 13.6 Hz), 133.9, 133.5 (d, J = 5.0 Hz), 129.8, 129.4, 128.6, 127.3, 98.8 (d, J = 31.7 Hz), 21.7, 21.6.

¹⁹F NMR (471 MHz, CDCl₃): δ = -61.30.

HRMS (EI): m/z [M + H]⁺ calcd for C₁₈H₁₅FN₂: 278.1214; found: 278.1212.

4-Fluoro-2-(m-tolyl)-6-(p-tolyl)pyrimidine (4g)

Yield: 0.071 g (0.26 mmol, 85%); yellow solid; mp 56–57 °C; R_f = 0.20 (PE/EtOAc, 80:1).

¹H NMR (400 MHz, CDCl₃): δ = 8.40–8.30 (m, 2 H), 8.09 (d, *J* = 8.3 Hz, 2 H), 7.46–7.36 (m, 1 H), 7.33 (d, *J* = 8.0 Hz, 3 H), 7.14 (s, 1 H), 2.47 (s, 3 H), 2.44 (s, 3 H).

¹³C NMR (126 MHz, CDCl₃): δ = 171.4 (d, J = 248.9 Hz), 168.7 (d, J = 7.3 Hz), 165.6 (d, J = 13.7 Hz), 142.1, 138.3, 136.6, 133.5 (d, J = 5.0 Hz), 132.3, 129.8, 129.2, 128.6, 127.4, 125.9, 99.1 (d, J = 31.7 Hz), 21.6, 21.6.

¹⁹F NMR (471 MHz, CDCl₃): δ = -61.23.

HRMS (ESI): m/z [M + H]⁺ calcd for C₁₈H₁₆FN₂: 279.1292; found: 279.1293.

4-Fluoro-2-(o-tolyl)-6-(p-tolyl)pyrimidine (4h)

Reaction time: 24 h.

Yield: 0.082 g (0.29 mmol, 96%); colorless oil; $R_f = 0.20$ (PE/EtOAc, 80:1).

¹H NMR (400 MHz, CDCl₃): δ = 8.08–8.00 (m, 3 H), 7.41–7.27 (m, 5 H), 7.17 (d, *J* = 1.2 Hz, 1 H), 2.70 (s, 3 H), 2.42 (s, 3 H).

¹³C NMR (126 MHz, CDCl₃): δ = 170.9 (d, J = 249.2 Hz), 168.4 (d, J = 7.4 Hz), 167.9 (d, J = 13.8 Hz), 142.1, 138.1, 136.8, 133.4 (d, J = 4.9 Hz), 131.7, 131.0, 130.2, 129.8, 127.4, 126.0, 98.6 (d, J = 31.3 Hz), 22.0, 21.6.

¹⁹F NMR (471 MHz, CDCl₃): δ = -60.87.

HRMS (ESI): m/z [M + H]⁺ calcd for C₁₈H₁₆FN₂: 279.1292; found: 279.1295.

4-Fluoro-2-phenyl-6-(p-tolyl)pyrimidine (4i)

Yield: 0.058 g (0.22 mmol, 73%); white solid; mp 90–92 °C; R_f = 0.20 (PE/EtOAc 80:1).

¹H NMR (400 MHz, CDCl₃): δ = 8.60–8.51 (m, 2 H), 8.16–8.08 (m, 2 H), 7.52 (dd, J = 5.2, 2.0 Hz, 3 H), 7.35 (d, J = 8.0 Hz, 2 H), 7.18 (s, 1 H), 2.46 (s, 3 H).

¹³C NMR (126 MHz, CDCl₃): δ = 171.4 (d, J = 249.2 Hz), 168.7 (d, J = 7.3 Hz), 165.4 (d, J = 14.0 Hz), 142.1, 136.6, 133.4 (d, J = 5.1 Hz), 131.5, 129.8, 128.7, 128.6, 127.4, 99.1 (d, J = 31.7 Hz), 21.6.

¹⁹F NMR (471 MHz, CDCl₃): δ = -61.15.

HRMS (ESI): m/z [M + H]⁺ calcd for C₁₇H₁₄FN₂: 265.1136; found: 265.1135.

2-(4-Bromophenyl)-4-fluoro-6-(p-tolyl)pyrimidine (4j)

Yield: 0.099 g (0.29 mmol, 98%); yellow solid; mp 132–133 °C; $R_f = 0.20$ (PE/EtOAc, 100:1).

Paper

F. Liu et al.

¹H NMR (400 MHz, CDCl₃): δ = 8.46–8.39 (m, 2 H), 8.12–8.06 (m, 2 H), 7.67–7.61 (m, 2 H), 7.35 (d, *J* = 7.9 Hz, 2 H), 7.19 (d, *J* = 1.1 Hz, 1 H), 2.46 (s, 3 H).

¹³C NMR (126 MHz, CDCl₃): δ = 171.4 (d, J = 249.9 Hz), 168.8 (d, J = 7.5 Hz), 164.5 (d, J = 14.2 Hz), 142.3, 135.5, 133.2 (d, J = 5.0 Hz), 131.9, 130.2, 129.9, 127.4, 126.3, 99.4 (d, J = 31.5 Hz), 21.6.

¹⁹F NMR (471 MHz, CDCl₃): δ = -60.92.

HRMS (ESI): m/z [M + H]⁺ calcd for C₁₇H₁₃BrFN₂: 343.0241; found: 343.0250.

4-Fluoro-2-(4-fluorophenyl)-6-(p-tolyl)pyrimidine (4k)

Yield: 0.069 g (0.24 mmol, 81%); white solid; mp 98–100 °C; R_f = 0.20 (PE/EtOAc, 80:1).

¹H NMR (400 MHz, CDCl₃): δ = 8.60–8.54 (m, 2 H), 8.13–8.07 (m, 2 H), 7.35 (d, *J* = 7.8 Hz, 2 H), 7.21–7.16 (m, 3 H), 2.46 (s, 3 H).

¹³C NMR (126 MHz, CDCl₃): δ = 171.4 (d, J = 249.4 Hz), 168.8 (d, J = 7.5 Hz), 165.2 (d, J = 251.6 Hz), 164.4 (d, J = 13.8 Hz), 142.2, 133.4 (d, J = 5.1 Hz), 132.8 (d, J = 2.8 Hz), 130.9, 130.9, 129.8, 127.4, 115.7, 115.5, 99.0 (d, J = 31.6 Hz), 21.6.

¹⁹F NMR (471 MHz, CDCl₃): δ = -61.04, -109.08.

HRMS (ESI): m/z [M + H]⁺ calcd for $C_{17}H_{13}F_2N_2$: 283.1041; found: 283.1046.

2-(4-Chlorophenyl)-4-fluoro-6-(p-tolyl)pyrimidine (41)

Yield: 0.074 g (0.25 mmol, 83%); white solid; mp 132–134 °C; R_f = 0.20 (PE/EtOAc 100:1).

¹H NMR (400 MHz, CDCl₃): δ = 8.51 (d, *J* = 8.6 Hz, 2 H), 8.10 (d, *J* = 8.2 Hz, 2 H), 7.49 (d, *J* = 8.6 Hz, 2 H), 7.36 (d, *J* = 8.0 Hz, 2 H), 7.19 (d, *J* = 1.0 Hz, 1 H), 2.46 (s, 3 H).

¹³C NMR (126 MHz, CDCl₃): δ = 171.4 (d, J = 249.8 Hz), 168.8 (d, J = 7.5 Hz), 164.4 (d, J = 13.9 Hz), 142.3, 137.7, 135.1, 133.3 (d, J = 4.9 Hz), 130.0, 129.9, 128.9, 127.4, 99.3 (d, J = 31.5 Hz), 21.6.

¹⁹F NMR (471 MHz, CDCl₃): δ = -60.94.

HRMS (ESI): m/z [M + H]⁺ calcd for C₁₇H₁₃CIFN₂: 299.0746; found: 299.0746.

2-(3-Chlorophenyl)-4-fluoro-6-(p-tolyl)pyrimidine (4m)

Yield: 0.069 g (0.23 mmol, 77%); white solid; mp 105–106 °C; $R_f = 0.20$ (PE/EtOAc, 100:1).

¹H NMR (400 MHz, CDCl₃): δ = 8.58–8.54 (m, 1 H), 8.44 (dt, *J* = 7.5, 1.5 Hz, 1 H), 8.15–8.05 (m, 2 H), 7.54–7.42 (m, 2 H), 7.39–7.33 (m, 2 H), 7.21 (d, *J* = 1.0 Hz, 1 H), 2.46 (s, 3 H).

¹³C NMR (126 MHz, $CDCl_3$): δ = 171.4 (d, *J* = 250.1 Hz), 168.9 (d, *J* = 7.6 Hz), 164.1 (d, *J* = 14.0 Hz), 142.4, 138.4, 134.8, 133.2 (d, *J* = 5.0 Hz), 131.4, 129.9, 128.7, 127.4, 126.8, 99.7 (d, *J* = 31.4 Hz), 21.6. ¹⁹F NMR (471 MHz, $CDCl_3$): δ = -60.85.

HRMS (ESI): m/z [M + H]⁺ calcd for C₁₇H₁₃ClFN₂: 299.0746; found: 299.0745.

4-Fluoro-2-(1H-pyrazol-1-yl)-6-(p-tolyl)pyrimidine (4n)

Yield: 0.073 g (0.29 mmol, 96%); white solid; mp 94–95 °C; R_{f} = 0.20 (PE/EtOAc, 60:1).

¹H NMR (400 MHz, CDCl₃): δ = 8.69–8.66 (m, 1 H), 8.08–8.02 (m, 2 H), 7.89–7.84 (m, 1 H), 7.33 (d, J = 8.0 Hz, 2 H), 7.15 (d, J = 0.9 Hz, 1 H), 6.53 (dd, J = 2.8, 1.6 Hz, 1 H), 2.44 (s, 3 H).

¹³C NMR (101 MHz, CDCl₃): δ = 171.9 (d, J = 253.3 Hz), 170.3 (d, J = 8.4 Hz), 155.9 (d, J = 17.2 Hz), 144.2, 142.9, 132.3 (d, J = 4.6 Hz), 129.8, 129.7, 127.5, 109.0, 98.4 (d, J = 30.6 Hz), 21.6.

¹⁹F NMR (471 MHz, CDCl₃): δ = -58.36.

HRMS (ESI): m/z [M + H]⁺ calcd for C₁₄H₁₁FN₄: 255.1002; found: 255.0994.

4-Fluoro-6-(p-tolyl)-2,2'-bipyrimidine (40)

Yield: 0.067 g (0.25 mmol, 84%); yellow solid; mp 98–99 °C; $R_f = 0.15$ (PE/EtOAc, 60:1).

¹H NMR (400 MHz, CDCl₃): δ = 9.06 (d, *J* = 4.8 Hz, 2 H), 8.13 (d, *J* = 7.9 Hz, 2 H), 7.47 (t, *J* = 4.8 Hz, 1 H), 7.42 (s, 1 H), 7.35 (d, *J* = 7.9 Hz, 2 H), 2.45 (s, 3 H).

¹³C NMR (126 MHz, CDCl₃): δ = 171.6 (d, J = 252.9 Hz), 170.1 (d, J = 7.2 Hz), 163.1 (d, J = 13.4 Hz), 161.9, 158.1, 142.5, 132.8 (d, J = 4.6 Hz), 129.9, 127.7, 121.7, 102.1 (d, J = 30.6 Hz), 21.6.

¹⁹F NMR (471 MHz, CDCl₃): δ = -59.12.

HRMS (ESI): m/z [M + H]⁺ calcd for C₁₅H₁₂FN₄: 267.1041; found: 267.1036.

Synthesis of 2-(4-((6-(3-Chlorophenyl)-2-ethylpyrimidin-4-yl)amino)phenyl)acetamide (7)

Following the General Procedure, 4-(3-chlorophenyl)-2-ethyl-6-fluoropyrimidine (0.207 g, 0.88 mmol) reacted with 2-(4-aminophenyl)acetamide (0.145 g, 0.96 mmol) in NMP (10 mL) at 120 °C for 16 h. After the completion of the reaction, the reaction was quenched with saturated NH₄Cl (20 mL) and the mixture was extracted with CH₂Cl₂ (3 × 20 mL). The organic layer was then dried over anhydrous Na₂SO₄ and concentrated under vacuum by rotary evaporation. The resulting crude mixture was purified by column chromatography (silica gel, CH₂Cl₂/MeOH) to give the product **7**.

Yield: 0.100 g (0.27 mmol, 31%); yellow solid; mp 85–87 °C; $R_f = 0.15$ (CH₂Cl₂/MeOH, 50:1).

¹H NMR (600 MHz, DMSO-*d*₆): δ = 9.59 (s, 1 H), 8.05 (d, *J* = 2.1 Hz, 1 H), 7.94 (d, *J* = 6.8 Hz, 1 H), 7.64 (d, *J* = 8.1 Hz, 2 H), 7.59–7.54 (m, 2 H), 7.42 (s, 1 H), 7.23 (d, *J* = 8.4 Hz, 2 H), 7.06 (s, 1 H), 6.86 (s, 1 H), 3.33 (s, 2 H), 2.81 (q, *J* = 7.6 Hz, 2 H), 1.32 (t, *J* = 7.6 Hz, 3 H).

 ^{13}C NMR (126 MHz, CDCl₃): δ = 173.6, 172.4, 162.8, 161.6, 139.8, 138.0, 134.9, 130.8, 130.6, 130.2, 130.0, 127.3, 125.2, 122.3, 97.7, 42.7, 32.7, 12.7.

HRMS (EI): $m/z \ [M + H]^+$ calcd for $C_{20}H_{19}CIN_4O$: 366.1242; found: 366.1245.

Funding Information

This study was financially supported by the National Natural Science Foundation of China (81872722), Science and Technology Commission of Shanghai Municipality (18431907100), Shanghai Sailing Program (17YF1423400), and SKLDR/Shanghai Institute of Materia Medica (SIMM) (SIMM1601ZZ-03).

Supporting Information

Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1690248.

Syn thesis

F. Liu et al.

References

- (1) Isanbor, C.; O'Hagan, D. J. Fluorine Chem. 2006, 127, 303.
- (2) Joshi, G.; Nayyar, H.; Kalra, S.; Sharma, P.; Munshi, A.; Singh, S.; Kumar, R. Chem. Biol. Drug Des. 2017, 90, 995.
- (3) Fang, Z.; Zheng, S.; Chan, K.-F.; Yuan, W.; Guo, Q.; Wu, W.; Lui, H.-K.; Lu, Y.; Leung, Y.-C.; Chan, T.-H.; Wong, K.-Y.; Sun, N. Eur. J. Med. Chem. 2019, 161, 141.
- (4) Ghith, A.; Youssef, K. M.; Ismail, N. S. M.; Abouzid, K. A. M. Bioorg. Chem. 2019, 83, 111.
- (5) Bai, S.; Liu, S.; Zhu, Y.; Wu, Q. Tetrahedron Lett. 2018, 59, 3179.
- (6) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359.
- (7) Utz, J. P. N. Engl. J. Med. 1972, 286, 777.
- (8) Saravolatz, L. D.; Johnson, L. B.; Kauffman, C. A. Clin. Infect. Dis. 2003, 36, 630.
- (9) Goetz, M. P.; Toi, M.; Campone, M.; Sohn, J.; Paluch-Shimon, S.; Huober, J.; Park, I. H.; Trédan, O.; Chen, S.-C.; Manso, L.; Freedman, O. C.; Garnica Jaliffe, G.; Forrester, T.; Frenzel, M.; Barriga, S.; Smith, I. C.; Bourayou, N.; Di Leo, A. J. Clin. Oncol. 2017, 35, 3638.
- (10) Friedberg, J. W.; Sharman, J.; Sweetenham, J.; Johnston, P. B.; Vose, J. M.; LaCasce, A.; Schaefer-Cutillo, J.; De Vos, S.; Sinha, R.; Leonard, J. P.; Cripe, L. D.; Gregory, S. A.; Sterba, M. P.; Lowe, A. M.; Levy, R.; Shipp, M. A. Blood 2010, 115, 2578.
- (11) deBoer, G. J.; Thornburgh, S.; Ehr, R. J. Pest Manage. Sci. 2006, 62, 316.
- (12) Zhang, C.; Zhou, T.; Wang, J.; Zhang, S.; Zhu, L.; Du, Z.; Wang, J. Sci. Total Environ. 2018, 610-611, 769.
- (13) Banks, R. E.; Prakash, A.; Venayak, N. D. J. Fluorine Chem. 1980, 16.325.
- (14) O'Neill, M. J.; Riesebeck, T.; Cornella, J. Angew. Chem. Int. Ed. 2018, 57, 9103.

(15) Parks, E. L.; Sandford, G.; Yufit, D. S.; Howard, J. A. K.; Christopher, J. A.; Miller, D. D. Tetrahedron 2010, 66, 6195.

Paper

- (16) Nencka, R.; Votruba, I.; Hrebabecky, H.; Jansa, P.; Tloust'ova, E.; Horska, K.; Masojidkova, M.; Holy, A. J. Med. Chem. 2007, 50, 6016
- (17) Wadsworth, H.; Jones, P. A.; Chau, W. F.; Durrant, C.; Morisson-Iveson, V.; Passmore, J.; O'Shea, D.; Wynn, D.; Khan, I.; Black, A.; Avory, M.; Trigg, W. Bioorg. Med. Chem. Lett. 2012, 22, 5795.
- (18) Bella, M.; Kobbelgaard, S.; Jørgensen, K. A. J. Am. Chem. Soc. 2005. 127. 3670.
- (19) Kuduk, S. D.; Di Marco, C. N.; Chang, R. K.; Ray, W. J.; Ma, L.; Wittmann, M.; Seager, M. A.; Koeplinger, K. A.; Thompson, C. D.; Hartman, G. D.; Bilodeau, M. T. Bioorg. Med. Chem. Lett. 2010, 20, 2533
- (20) Maes, W.; Van Rossom, W.; Van Hecke, K.; Van Meervelt, L.; Dehaen, W. Org. Lett. 2006, 8, 4161.
- (21) (a) Klauke, E.; Oehlmann, L.; Baasner, B. J. Fluorine Chem. 1982, 21, 495. (b) Bennett, B. K.; Harrison, R. G.; Richmond, T. G. J. Am. Chem. Soc. 1994, 116, 11165.
- (22) Inouye, Y.; Higuchi, Y. J. Fluorine Chem. 1985, 27, 231.
- (23) Sedenkova, K. N.; Averina, E. B.; Grishin, Y. K.; Kuznetsova, T. S.; Zefirov, N. S. Tetrahedron Lett. 2014, 55, 483.
- (24) Neumann, C. N.; Hooker, J. M.; Ritter, T. Nature 2016, 534, 369.
- (25) Sather, A. C.; Lee, H. G.; De La Rosa, V. Y.; Yang, Y.; Müller, P.; Buchwald, S. L. J. Am. Chem. Soc. 2015, 137, 13433.
- (26) Jiang, B.; Zhang, X.; Yang, C. Org. Chem. Front. 2018, 5, 1724.
- (27) Shipe, W. D.; Sharik, S. S.; Barrow, J. C.; McGaughey, G. B.; Theberge, C. R.; Uslaner, J. M.; Yan, Y.; Renger, J. J.; Smith, S. M.; Coleman, P. J.; Cox, C. D. J. Med. Chem. 2015, 58, 7888.
- (28) Wu, Y. B.; Lu, G. P.; Yuan, T.; Xu, Z. B.; Wan, L.; Cai, C. Chem. Commun. 2016, 52, 13668.